Matrix Iteration Technique क्या होती है? | Eigen Value & Eigen Vector Explained in Hindi


Matrix Iteration Technique क्या होती है? | Eigen Value & Eigen Vector Explained in Hindi

Matrix Iteration Technique एक numerical method है जो MDOF systems के लिए eigen value (natural frequencies) और eigen vector (mode shapes) determine करने में use होती है। यह especially large structural systems में effective होती है।

1. Concept

Eigen value problem:

([K] – ω² [M]) {Φ} = 0

Matrix iteration technique में initial guess vector {Φ₀} से start करके repeated multiplication से dominant eigen value और corresponding eigen vector find किया जाता है।

2. Steps Involved

  • Choose initial vector {Φ₀}
  • Iteratively multiply by inverse of stiffness or mass matrix
  • Normalize result after each iteration
  • Repeat until convergence of eigen value (ω²) and eigen vector {Φ}

3. Advantages

  • Efficient for large MDOF systems
  • Simple computational procedure
  • Dominant mode extraction is straightforward
  • Can be implemented in MATLAB, Python, or other software

4. Applications

  • Structural vibration analysis
  • Modal analysis of buildings, bridges, and machines
  • Design of damping and vibration isolation systems
  • Finite Element Method eigen solution

5. Conclusion

Matrix iteration technique eigen value और eigen vector calculation में powerful method है। Large structural systems में natural frequencies और mode shapes determine करने के लिए यह reliable और efficient approach है।

Related Post